Search results for "Stationary surface"
showing 2 items of 2 documents
Hölder stability for Serrin’s overdetermined problem
2015
In a bounded domain \(\varOmega \), we consider a positive solution of the problem \(\Delta u+f(u)=0\) in \(\varOmega \), \(u=0\) on \(\partial \varOmega \), where \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a locally Lipschitz continuous function. Under sufficient conditions on \(\varOmega \) (for instance, if \(\varOmega \) is convex), we show that \(\partial \varOmega \) is contained in a spherical annulus of radii \(r_i 0\) and \(\tau \in (0,1]\). Here, \([u_\nu ]_{\partial \varOmega }\) is the Lipschitz seminorm on \(\partial \varOmega \) of the normal derivative of u. This result improves to Holder stability the logarithmic estimate obtained in Aftalion et al. (Adv Differ Equ 4:907–93…
Solutions of elliptic equations with a level surface parallel to the boundary: stability of the radial configuration
2016
A positive solution of a homogeneous Dirichlet boundary value problem or initial-value problems for certain elliptic or parabolic equations must be radially symmetric and monotone in the radial direction if just one of its level surfaces is parallel to the boundary of the domain. Here, for the elliptic case, we prove the stability counterpart of that result. We show that if the solution is almost constant on a surface at a fixed distance from the boundary, then the domain is almost radially symmetric, in the sense that is contained in and contains two concentric balls $${B_{{r_e}}}$$ and $${B_{{r_i}}}$$ , with the difference r e -r i (linearly) controlled by a suitable norm of the deviation…